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Abstract-A direct numerical simulation of fully developed turbulent channel flow is used to study fully 
developed passive heat transfer between the channel walls. The time-dependent, three-dimensional Navier- 
Stokes equation and the advection-diffusion equation are solved numerically with 1064960 grid points. 
No subgrid point modeling is used since all the important turbulence scales are resolved. The Reynolds 

number, based on the channel half-width and the bulk velocity, is 2262, and the Prandtl number is I. 

I. INTRODUCTION 

UNTII. recently, numerical simulations of turbulent 
flow employed some form of modeling in order to 
simplify the governing equations. Most work prior 
to the present decade employed averaged transport 
equations for the moments of a certain order in which 
higher order moments were modeled. More recently, 
a number of investigations have employed the large 
eddy simulation (LES) technique in which the three- 
dimensional, time-dependent equations are solved but 
models are employed to compute the effect of subgrid- 
scale turbulence on the resolvable scales [l&3]. 
Another approach is the simple eddy modeling in 
which the organized, quasi-periodic structures in the 
viscous wall region are simulated [4--g]. However, with 
the advent of supercomputers, direct numerical simu- 
lations (DNS) which employ no simplifications of the 
governing equations for wall-bounded turbulent flows 
arc now possible [l&17], and this paper will present 
the results of such a simulation for passive heat trans- 
fer in a turbulent channel flow. 

In general, the dynamics of the turbulent flow field 
and the fluctuating temperature field are coupled. The 
thermal energy balance is coupled to the momentum 
balance through convection, and the momentum bal- 
ance is coupled to the thermal energy balance through 
the temperature dependence of the fiuid viscosity and 
the density. However, for small temperature differ- 
ences, the influence of temperature on the physical 
properties of the fluid can be neglected and the 
momentum balance is decoupled from the thermal 
energy balance. 

The three-dimensional, time-dependent Navier- 
Stokes equation and the adve~tion~iffusion equation 
for the temperature field were solved in a grid of 

1064 960 points. A pseudospectral technique was used 
to solve the balance equations. The momentum equa- 
tion was sohed by using an adaptation of the Orszag- 
Kells approach [IO]. The Orszag-Kells approach was 
modified to include viscous effects into the calculation 
of the pressure field and to ensure that continuity is 
satisfied at the walls [ 121. The thermal energy balance 
was solved by a technique developed by Circelli and 
McLaughlin [9]. 

2. FORMULATION OF THE PROBLEM 

The probiem to be considered is that of passive 
heat transfer in a pressure-d~ven turbulent flow of an 
incompressible, Newtonian fluid between two infinite, 
flat channel walls. The bottom wall is heated and the 
top wall is cooled at the same rate. 

The computations of the time-dependent, three- 
dimensional temperature and velocity fields were con- 
tinued until a stationary state was reached. Two or 
more realizations of the spatial variation of the tem- 
perature or the velocity were then analyzed to give 
statistical properties. A discussion of results on the 
velocity field is presented elsewhere [15, 161. Results 
on the temperature are given in this paper. 

Of particular interest are the findings on the bal- 
ances of the mean square of the temperature and of 
the temperature fluctuations. These are analogues of 
the balances of the kinetic energies of the mean flow 
and of the turbulence. However, a comparison must 
recognize differences arising from the specification of 
the controlling variables. 

Energy for the velocity field is supplied to the flow- 
ing fluid by the pressure gradient. This energy can be 
directly dissipated by molecular viscosity or it can be 
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G 
constant in conduction profile 5 coordinate in direction of mean flow 
channel half-width 2 unit vector in the x-direction 

i J-1 Y coordinate perpendicular to channel walls 

.i integer -6 unit vector in the y-direction 
k,, k= x- and z-components of wave vector z spanwise coordinate 
I integer i unit vector in the z-direction. 
L> upper limit on k, summation 
M upper limit on k, summation Greek symbols 
111 integer 6 Dirac delta function 
n integer ff deviation of temperature from conduction 
N upper limit on Chebyshev summation profile 

N,, net production of turbulent kinetic energy K thermal diffus~vity 

P pressure 4 periodicity length in x 
P average pressure 4 periodicity length in z 

L 
Prandtl number @ dynamic viscosity 
generic field variable V kinematic viscosity 

0 spectral transform of Q n: dynamic pressure based on fluctuating 
r position vector pressure 
t time or temperature fluctuation II dynamic pressure 
t’ r.m.s. temperature Auctuation P density of fluid. 
T temperature 

TFl Chebyshev polynomial of order n Subscripts 
AT temperature difference between channel x x-component 

WdlS Y ~-component 
u fluctuating part of the x-component of z z-component. 

velocity 
Li mean value of the x-component of Miscellaneous 

velocity V gradient operator 
1’ y-component of velocity V2 Laplacian operator 
V velocity Q average of Q over horizontal coordinates 
M z-component of velocity and time. 

converted into turbulent velocity fluctuations. The 
main production of turbulence occurs close to the 
wall, where the velocity gradients are large, so that 
mean flow energy derived from the pressure gradient 
is convected to the wall by turbulence. 

For the heat transfer problem, the source of mean- 
square temperature is the wall. The energy associated 
with the mean temperature field is carried into the 
fluid by conduction. It diffuses away from the wall by 
molecular and turbulent transport and is converted 
into turbulent temperature Auctuations. Because of 
the boundary conditions imposed on the tem~rature. 
significant gradients in the mean temperature can exist 
throughout the field so that production of tempera- 
ture fluctuations can be important at the center of 
the channel as well as the wall. 

A velocity field which would be more analogous to 
the heat transfer problem being considered is plane 
Couette flow for which the pressure gradient is zero 
and the two channel walls are moved relative to one 
another. Here energy is transmitted to the fluid by the 

work of the moving boundaries on the fluid and not 
by the pressure gradient. 

The simulation assumes that body forces and vis- 
cous heating are negligible. The x-direction points 
downstream, the y-direction points in the direction 
perpendicular to the channel walls, and the z-direction 
points in the spanwise direction. The components of 
the fluid velocity in the x-, y-, and z-directions are 

denoted by ut U, v, and W, respectively. The com- 
putational domain is periodic in the streamwise and 
spanwise direction with periodicity lengths I, and AZ, 
respectively. The distance between the channel walls 
is 2H. 

The momentum equation takes the form of the 
Navier-Stokes equation for an incompressible fluid 
with no body forces 

8V 
at +-v*vv = -Vp/ptvVv. 

By using the identity 
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where 

v-vv = -vx w+jV(v-v) (2) 

w=vxv (3) 

the Navier-Stokes equation can be written as 

where 

av 
~ = v x w-vl-I/p+vv2v 
at (4) 

II =p+;pv*v. (5) 

The above form of the Navier-Stokes equation has the 
advantage that the convective term does not violate 
conservation of energy when the velocity field is 
expanded in a truncated Fourier-Chebyshev series 
[18]. The fluid is assumed to be incompressible and 
to satisfy rigid, no-slip boundary conditions on the 
channel walls 

v*v=o (6) 

v=O, y=H,-H. (7) 

In addition, periodic boundary conditions are 
imposed in the downstream and spanwise directions 

v(x+ml,, y, z+nl,, t) = v(x, y,z, t). (8) 

In the above equations, v = (u+ H)a+z@+ wl is the 
velocity field (a, p, and i are unit vectors in the x-, 
y-, and z-directions, respectively), II is the dynamic 
pressure, and m and n are integers. 

Under steady-state conditions, a force balance 
shows that the external pressure gradient is given by 

dP/dx = -p&H (9) 

where u* denotes the friction velocity. It is convenient 
to rewrite the equations of motion in dimensionless 
‘wall units’ based on v, p, and u*. Although it is 
conventional to use a + superscript to denote values 
in wall units, the superscript will be omitted in the 
present paper in order to avoid cumbersome notation. 
From this point on, it will be understood that all 
quantities are expressed in wall units unless otherwise 
stated. The dimensionless Navier-Stokes equation 
takes the form 

av 
- = vx w-Va+(l/H)~+V2v at (10) 

where rr is the dynamic pressure based on the fluc- 
tuating part of the pressure. 

The thermal energy balance in an incompressible 
fluid with constant material properties is the advec- 
tiondiffusion equation 

aT 
~ = -v*VT+(l/Pr)V’T. at (11) 

In equation (1 l), Pr denotes the Prandtl number, 
which is defined by 

Pr = V/K (12) 

where IC denotes the thermal diffusivity. It is con- 
venient to introduce the difference. 8, between the 
temperature and the temperature of a conduction pro- 
file 

where 

0 = T+uy (13) 

a = AT/2H. (14) 

Thus, 6 satisfies homogeneous boundary conditions 
on the channel walls 

O=O, y= -H or H. (15) 

It is also assumed that T and 0 satisfy periodic bound- 
ary conditions in the x- and z-directions with the same 
periodicity lengths as v 

O(x+ml,, y, z+nl,, t) = Q(x, y, 2, t). (16) 

The initial condition for the velocity field was a 
parabolic velocity profile with random velocity 
fluctuations superimposed on it. The spanwise and 
streamwise velocity fluctuations were specified by a 
random number generator and scaled so that they 
were two orders of magnitude smaller than the mean 
velocity. The normal velocity fluctuations were deter- 
mined by imposing continuity. 

The initial condition for the temperature profile was 
the conduction profile (e = 0 or T = -ay). The heat 
transfer simulation was started after the hydro- 
dynamic simulation had reached a steady-state so it 
was unnecessary to introduce random temperature 
fluctuations; the velocity fluctuations quickly gen- 
erated a turbulent temperature field. 

3. COMPUTER SIMULATION 

The algorithms used to solve the governing equa- 
tions are discussed in detail elsewhere [15, 11. In this 
section, a brief summary of the procedures will be 
presented. 

The Navier-Stokes equation was integrated in time 
using a fractional step method similar to the one dis- 
cussed by Orszag and Kells [lo]. The Orszag-Kells 
method does not include viscous effects in the evalu- 
ation of the pressure, and, as a consequence, the con- 
tinuity condition is not satisfied at the channel walls. 
In order to avoid this problem, a Green’s function 
method devised by Marcus [ 121 was used to compute 
the pressure field. The advectiondiffusion equation 
was integrated in time with a fractional step method 
that was devised by Circelli and McLaughlin [9]. 

Pseudospectral methods are used to solve the 
Navier-Stokes equation and the advectiondiffusion 
equation, and, for that purpose, each field variable, 
Q(x, y, z, t), is expanded in a spectral sum 

k, kl n = 0 

(17) 
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where 

ii, = p. -L<I<L-I (IX) 

2n 
k; = -:-WI, -M<m<M-I. (19) 

A: 

The quantities k, and X, in equations (IX) and (19) are 
the wave numbers in the I- and z-directions, respec- 
tively. The function r, is the Chebyshev polynomial 
of order n. The collocation points in the y-direction 

are given by 

l’, = il cos FJ (3 P ’ 
O<j<P. (20) 

When the operations are carried out directly with 
the held variables, Q(.x. I’, Z, t), they are said to be 
performed in ‘physical space’. When operations are 
carried out with the Fourier-Chebyshev coefficients, 
&(k,,p, I&), they are said to be performed in ‘Fourier 
space’. All spatial derivatives are computed in Fourier 
space. The computation of viscous effects and the 
effect of the pressure field on the velocity field are also 

computed in Fourier space. On the other hand, the 
evaluation of products such as v x o is performed in 
physical space, and this leads to aliasing errors. In 
principle, aliasing can be prevented by zeroing the top 
half of the spectrum in each direction, but this is 
costly in terms of the storage and time needed for 
fast Fourier transforms. Orszag [IS] suggested that 
satisfactory accuracy can be obtained by applying a 
‘two-thirds’ rule in which the top third of the spectral 
coefficients are zeroed. This procedure was applied to 
the x- and z-directions in the calculations. 

The main input parameters for a simulation are the 

computational box lengths and the Prandtl number. 
The half channel height fixes the Reynolds number. 
The computational box size for the simulation was 
H = 150. i, = 1900, and i., = 950. The Prandtl num- 
ber and the coefficient a were also set equal to unity. 
The only parameters that varied during the simulation 
were the number of grid points and the size of the 
time step. The heat transfer calculation was not begun 
until 12 500 time units after the beginning of the simu- 
lation The size of the time step was varied during the 
simulation from 0.005 to 0.5 ; during the transient part 
of the simulation, a very small time step was needed 
in order to avoid numerical instability. The time step 
was kept as large as possible in order to reach a 
stationary state quickly. Once a stationary state was 
reached, the time step was reduced to 0.25. It was 
found that the value of the time step had little effect 
on the computed statistics. 

The parameters L. M, and N were all equal to 64 
in the calculations to be reported. Thus, the numbers 
of grid points along the x-, J’-, and :-directions were 
128, 65, and 128, respectively ; the corresponding grid 
spacings in the s- and =-directions were 14.8 and 7.42 
wall units, and the grid spacing in the js-direction 

varied from 0.1 X wall units at the wall to 7.36 wall 
units in the center of the channel. It is worth potnting 
out that these arc the spacings between the collocation 
points on which the non-linear terms are evaluated. 
but, as a consequence of the dealiasing in the s- and 
r-directions, the grid spacings in the .Y- and :-direc- 
tions arc three times smaller than the smallest vvuvc- 
lengths in those directions. 

Statistical averages are functions only of J’ so aver- 

ages were performed over .\- and z as well as time. 
The two-point correlations and the kinetic energy and 

thermal variance balances arc based on averages over 
two widely spaced times. while all other averages are 
based on 300 time values that were taken at intervals 
of 2.5 wall time units. Roughly 7.5 h of CPU time on 
a Cray 2 computer are needed in order to simulate the 
channel flow over 750 wall time units. Of course. 
as noted earlier, one must first produce steady-state 
turbulence which also requires a large amount of CPlJ 
time. 

4. RESULTS 

The mean temperature, T, and heat flux profiles 

across the channel are shown in Fig. I. The heat flux 
is a constant across the channel showing that the 
temperature field is at steady state. The mean tem- 

perature has been made dimensionless with the mag- 
nitude of the wall temperature. The mean temperature 
profile is in reasonably good agreement with the 
experimental results of Page et al. [19] at the bottom 
wall and it is symmetric about the channel centerline ; 
the reason for the asymmetry in the experimental 
measurements is not known. The Nussclt number pre- 
dicted by the simulation is 25.36 at a Reynolds number 
equal to 2262, which is in excellent agreement with 

experimental measurements of 25.1 and 25.7 at Reyn- 

olds numbers equal to 2245 and 2340, respectively. 
The intensity of the fluctuating temperature, f’. is 

shown in Fig. 2. Also shown in Fig. 2 are the expcr- 
imental measurements of Krishnamoorthy [20] ; 
Krishnamoorthy’s measurements were carried out 
in a turbulent boundary layer of air, and his values 
for the intensity have been divided by the Prandtl 
number of air. Pr = 0.72. It is interesting to note the 
close agreement between the numerical results and thz 
scaled experimental values in the viscous wall region. 
Unlike the velocity intensities. the temperature inten- 

sity reaches a maximum at the channel centerline; 
this difference is due to the fact that the boundary 
conditions which arc imposed on the temperature 
cause the temperature gradient to be nonzero in the 
center of the channel. There is a local maximum in 
the temperature intensity at approximately I7 wall 
units from the closest channel wall. which is close to 
the maximum in the streamwise intensity that occurs 
at I4 wall units. As the distance from the wall goes to 
zero. the intensity goes to zero linearly with a slope 
equal to 0.397Pr. 

The temperatureevelocity correlations are shown in 
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Page Run 45 [19], Nu=25.1, Pr=0.71, Re=2245 
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FIG. 1. Mean temperature and heat flux profiles. 

Fig. 3. The bottom (hot) wall is used as the reference 
for y = 0 for the z correlation. This correlation has 
the opposite sign for the top (cold) wall. As a conse- 
quence, the correlation is zero at the channel center 
where contributions from upward and downward 
fluid elements exactly cancel. The %5 correlation indi- 
cates that positive temperature fluctuations correlate 
with positive normal velocities and that negative tem- 
perature fluctuations correlate with negative normal 
velocities. The tU correlation indicates that, at the 

bottom wall, positive temperature fluctuations cor- 

relate with negative streamwise fluctuations. Near the 
top wall, positive temperature fluctuations correlate 
with positive streamwise velocity fluctuations and 
negative temperature fluctuations correlate with nega- 
tive normal velocities. The correlation coefficient for 
the streamwise velocity fluctuations is extremely large 
in the viscous wall region with a peak value of 0.95 at 
y = 6.5; this shows the high degree of correlation 
between the temperature and streamwise fluctuations 
in the viscous wall region. 

The eddy conductivity made dimensionless with 

FIG. 2. Intensity of the fluctuating part of the temperature. FIG. 3. Temperature-velocity correlation coefficients 
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FIG. 4. Eddy conductivity and turbulent Prandtl number 
profiles. 

mixed parameters (the channel half height and the 

friction velocity) is shown in Fig. 4. The profile agrees 
fairly well with the experimental measurements of 
Page et al. [21] in the viscous wall region, but it falls 
below the experimental values in the channel core. 
Page et al. computed the eddy conductivity by sub- 
tracting the contribution of molecular conduction 

from the total heat flux, not by measuring the tem- 
perature-normal velocity correlation. Johnk and 
Hanratty [22] reported that the eddy conductivity is 
0.081 near the center of a pipe for the fully developed 
heat transfer region, and their value is in good agree- 
ment with the channel core value predicted by the 

simulation. 
The ratio of the eddy viscosity and the eddy con- 

ductivity, the turbulent Prandtl number, is also shown 
in Fig. 4. The turbulent Prandtl number is close to 

unity throughout the viscous wall region and declines 
to about 0.75 near the channel centerline. This result 
is in agreement with the experimental results of ref. 
[22] which reported the turbulent Prandtl number 
near the center of a pipe for the fully developed heat 
transfer region to be 0.813, 0.769, and 0.806 at Reyn- 
olds numbers equal to 18 000, 35 000, and 71000. 

Two-point spatial correlations of fluctuating quan- 
tities are presented as a function of y and spanwise 
separation in Figs. 5 and 6. In both figures, the con- 
tours are for fixed values of the correlation. The con- 

tour interval is 0.05 ; every 5% correlation increment 
is shown and every 20% increment labelled. Note 
that the y-axis is a stretched scale. The correlations 
involving the temperature use the hot wall as the ref- 
erence for 4’ = 0. 

Since the computational domain has periodicity 
lengths equal to 950 and 1900 in the spanwise and 
streamwise directions, respectively, all two-point spa- 
tial correlations with spanwise and streamwise direc- 
tions must go to zero in separations equal to 475 and 
950 if the periodicity lengths are large enough to 
resolve the largest scales of motion. It is clear from 
Figs. 5 and 6 that the iii?, &I. mand tv correlations as 

a function of spanwise separation are consistent with 
this requirement. A detailed study of other correla- 
tions as a function of both spanwise and strcam- 
wise separation confirms that the periodicity lengths 
were sufficiently large [ 16, 171. 

Figure 5 presents the two-point cross-correlation 
with spanwise separation of the streamwise com- 
ponent of velocity (a) and the fluctuating part of the 
temperature (b). It can be seen that the correlations 

for the streamwise component of velocity and the 
temperature are almost identical. The correlations 

close to the wall cross zero when the spanwise sep- 
aration is approximately 30 and they reach minima 

when the separation is approximately 52 wall units. 
This behavior is consistent with a streak spacing equal 
to 104 wall units. It is interesting to note that the 
correlations exhibit a second maximum at a spanwise 

separation approximately equal to 108 wall units, 
which indicates the periodic nature of the streamwise 
component of velocity in the viscous wall region. It 

should also be noted that Fig. 6(b) is consistent with 
Fig. 3 in that the single point cross-correlation is pre- 
dicted to be approximately 0.45 in the core of the 
channel. 

Figure 6(a) presents the two-point cross-correlation 
with spanwise separation of the streamwise and nor- 

mal velocity components ; this is the Reynolds stress 
correlation coefficient. The spanwise scale of motion 
in the viscous wall region is predicted to be approxi- 
mately 100. This behavior is consistent with the per- 
iodic nature of the viscous wall region and it indicates 

that the spanwise scale of motion affecting the dynam- 
ics of the Reynolds stress in the viscous wall region 
(and, therefore. turbulence production) is 100. The 
correlations show that, on average, the viscous wall 
region is made up of alternating inflows and outflows 
with a wavelength equal to 100. The correlation is 
also strongest at J’ = 12, which is the location of the 
maximum turbulence production. The spanwise scale 
characterizing the uv product increases in the outer 
region to approximately 200. 

Figure 6(b) presents the two-point cross-cor- 
relation with spanwise separation of the temperature 
and the normal velocity components. The striking 

similarity between Figs. 6(a) and (b) suggests that the 
eddy motions in the y- -_ plane which control momcn- 
turn transport in the viscous wall region also control 
heat transport at the wall. On the other hand, Fig. 
6(b) shows that there is a strong correlation between 
the temperature and the normal component of 
velocity, while Fig. 6(a) reveals that there is little 
correlation between the streamwise component of vel- 
ocity and the normal component of velocity in the 
core of the channel. The difference between the two 
turbulent transport terms results from the different 
boundary conditions imposed on the transport equa- 
tions which dictate that at the channel center the stress 
is zero and that the heat flux is the same as at the wall. 

The budget for the variance of mean temperature 
is derived from equation (1 I ) 
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(b) Z 

FIG. 5. (a) Two-point cross-correlation with spanwise separation for the streamwise fluctuating velocity. 
(b) Two-point cross-correlation with spanwise separation for the fluctuating temperature. 

(21) 
The first term in equation (21) is the production of 
mean-square temperature fluctuations. It is a loss term 
that appears in the budget of the fluctuating tem- 
perature variance (see below) as a source term. The 
second term gives the turbulent transport of mean 
temperature variance. The third term is the rate of 
molecular diffusion of mean temperature variance. 
The last term gives the rate of dissipation of mean 
temperature variance. The terms of equation (21) are 
plotted in Fig. 7. In the outer flow region, y > 50, the 
turbulent transport term balances the production of 
temperature fluctuations. The source of mean tem- 
perature variance in the viscous wall region is the 
molecular diffusion term. At the wall, the rate of 

molecular diffusion is balanced by the dissipation rate, 
but the dissipation rate becomes unimportant by 
y = 10. 

The budget for the variance of the fluctuating tem- 
perature is given by 

The first term is the production of the turbulent fluc- 
tuating temperature. The second term is the turbulent 
transport of temperature fluctuations by normal vel- 
ocities. The third term is the molecular diffusion of 
temperature fluctuations. The final term is the dis- 
sipation of temperature fluctuations. It can be seen in 
Fig. 8 that, throughout the channel, the two biggest 
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F~ti. 6. (a) Two-point cross-correlation with spanwise separation for the streamwise fiuctuating velocity 
and the normal velocity. (b) Two-point cross-correlation with spanwise separation for the fluctuating 

temperature and the normal velocity. 

terms in the budget are the production and dissipation 
terms ; the other two terms redistribute temperature 
fluctuations in the region ,Y < 30. For JJ > 30, the tem- 
perature fluctuations are in equilibrium in the sense 
that production and dissipation are locally in balance. 
The profiles are qualitatively similar to those reported 
by Krishnamoorthy and Antonia [23] for a turbulent 
boundary layer. If one assumes that the numbers on 
the left-hand ordinate of Fig. 8 of their paper cor- 
respond to normalization with (&/u&?), where, in the 
notation used by Krishnamoorthy and Antonia, 6 
denotes the boundary layer thickness, U, the friction 
velocity, and 8, the friction temperature, then the 
results of the present paper agree well with those of 
Krishnamoorthy and Antonia. It should be pointed 
out that Krishnamoorthy and Antonia estimated the 
turbulent diffusion of temperature fluctuations from 
the closure condition rather than determining it 
directly from measurements. 

5. DISCUSSION 

The results of a direct numerical simulation of tur- 
bulent heat transfer in a fully developed turbulent 
channel flow are consistent with the notion that the 

dominant wall eddies have a spanwise scale approxi- 
mately equal to 50 wall units, and that these eddies 
control both the production of Reynolds stress and 
the turbulent heat transfer. The energy balances show 
that the production and dissipation of thermal vari- 
ance nearly balance locally throughout most of the 
channel. 

It is instructive to contrast the terms of the balance 

equations for the temperature variance and the fluc- 
tuating temperature variance with the behavior of the 
corresponding balances for the mean kinetic energy 
and the turbulent kinetic energy. The transport equa- 
tions for the kinetic energy and the Reynolds stress 
are derived directly from the Navier-Stokes equation. 
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FIG. 7. Mean temperature variance budget. 

The velocity and pressure are decomposed into 
mean and fluctuating parts, and the equations are 
averaged to obtain equations for the mean flow. For 
fully developed turbulent channel flow, the mean kin- 

etic energy balance takes the form 

(23) 

The first term in equation (23) is a loss term which 
appears in the turbulent kinetic energy balance (see 
below) as a source term giving the rate of production 
of turbulent kinetic energy. The second term is the 
mean work done by the external pressure gradient. 
The third term is the rate of transport of mean flow 
energy by turbulence. The fourth term is the rate of 
molecular diffusion of mean kinetic energy. The last 
term is the rate of dissipation of the mean kinetic 

energy. 
The mean kinetic energy balance is shown in Fig. 

9. At the wall, the rate of viscous dissipation is 
balanced by viscous diffusion. In the buffer region 
(7 < y < 30), all rate terms become important. The 
turbulent transport term and the work done by the 
pressure gradient balance the losses from viscous 
dissipation, viscous diffusion, and turbulent kinetic 
energy production. Outside the viscous wall region 
(y > 30), only the energy supplied by the pressure 

gradient is balanced by turbulent diffusion toward the 
wall where mean flow energy is converted to turbu- 
lence. This behavior should be contrasted with the 
balance for the mean temperature variance shown in 
Fig. 7. The source of thermal energy is at the hot 
wall and, therefore, in the core of the channel, the 

important terms are the transport of mean tem- 
perature variance and the production of turbulent 

temperature fluctuations. 
For fully developed turbulent channel flow, the tur- 

bulent kinetic energy budget takes the form 

2 2 

O= _,%!_dq_dE+d’$!$?- 
du d.v dy 

(24) 

where there are implied summations over the i and j 
indices in the last term. The first term in equation (24) 
is the rate of production of turbulent kinetic energy. 

The second term is the rate of transport of turbulent 
kinetic energy by velocity fluctuations. The third term 
represents turbulent transport due to pressure fluc- 
tuations. The fourth term is the rate of molecular 
diffusion of turbulent kinetic energy. The last term is 
the rate of dissipation of turbulent kinetic energy. 

The terms in equation (24) are shown in Fig. 10. 
The production of turbulent kinetic energy balances 
the dissipation in the region 40 < y < 100. In the core 
region, y > 100, turbulent transport balances dis- 
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sipation. By contrast, Fig. 8 shows that, in the core 
region, the important terms in the fluctuating tem- 
perature balance are the production and dissipation 
of turbulent temperature fluctuations. The reason for 
these differences is that the mean temperature gradient 
is nonzero near the middle of the channel while the 

gradient of the mean velocity vanishes at the center of 
the channel. 

Finally, Fig. 11 compares the net production of 
turbulent kinetic energy with the net production of 
fluctuating temperature variance. In both cases, the 
net production is defined by integrating the sum of 
local production and dissipation rates from the wall 
to a given value of JJ, where y is measured from the 
closest wall. For example, the net production of tur- 
bulent kinetic energy, Nker is defined by 

Figure 11 reveals a remarkable similarity between the 
net production for the turbulent kinetic energy and the 
fluctuating temperature variance in the region y < 40. 
Near the center of the channel, the net production 
of thermal variance continues to rise, while the net 
production of the turbulent kinetic energy decreases 
slightly due to the fact that the gradient of the mean 
temperature is nonzero at the center of the channel. 

6. CONCLUSION 

The main results of a direct numerical simulation 

of passive heat transfer in a turbulent channel flow 

have been presented. Where possible, the computed 
results have been compared with published exper- 

imental results. Specifically, the mean temperature 
profile, the eddy conductivity profile, and the tur- 

bulent Prandtl number are in reasonably good agree- 
ment with experiment. The terms of the budget for 
the fluctuating variance of the fluctuating temperature 
are qualitatively similar to those reported by Krishna- 
moorthy and Antonia [23]. On the other hand, it is 
difficult to find detailed quantitative results for the 
intensity of the fluctuating temperature in the viscous 

wall region ; previous studies have tended to focus on 
the logarithmic or core regions. There are no pub- 
lished results for the two-point cross-correlation with 
spanwise separation for the fluctuating temperature, 
the two-point cross-correlation with spanwise sep- 
aration for the fluctuating temperature and the nor- 
mal component of velocity, or the budget for the 
variance of mean temperature. In addition, Krishna- 
moorthy and Antonia [23] did not obtain the turbulent 
transport of temperature fluctuations directly from 
measurements. 

The results reported in ref. [16] indicated that the 
dominant wall eddies have a spanwise scale approxi- 
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FIG. 1 I. Net production of fluctuating temperature variance 
and turbulent kinetic energy. 

mately equal to 50 wall units and that these eddies 
control the Reynolds stress production, and, there- 
fore, the production of turbulent kinetic energy. The 
two-point cross-correlations with spanwise separation 
in Figs. 5 and 6 of the present paper indicate that the 
same eddies that control Reynolds stress production 
also control turbulent heat transfer at the wall by 
transporting hot and cold fluid to and from the wall. 

The fluctuating temperature budget reveals that, in 
the channel core, only the production and dissipation 
of the fluctuating temperature are significant so that 
the temperature fluctuations are in equilibrium. The 
net production of turbulent kinetic energy bears a 
striking similarity to the net production of fluctuating 
temperature variance in the region y < 40. 
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SIMULATION NUMERIQUE DIRECTE DU TRANSFERT DE CHALEUR PASSIF DANS 
UN ECOULEMENT TURBULENT EN CANAL 

R&m&Une simulation numerique directe de l’ecoulement turbulent en canal pleinement etabli est 
utilisee pour etudier le transfert thermique passif entre les parois du canal. L’equation instationnaire 
tridimensionnelle de Navier-Stokes et I’equation de convection sont resolues numeriquement avec une 
grille de 1064960 points, On n’utilise pas de grille plus fine parce que toutes les echelles de turbulence 
importantes sont rtsolues. Le nombre de Reynolds, base sur la demi-largeur du canal et sur la vitesse 

debitante, est de 2262 et le nombre de Prandtl est egal a un. 

DIREKTE NUMERISCHE SIMULATION DES PASSIVEN WARMEUBERGANGS IN 
EINER TURBULENTEN KANALSTRijMUNG 

Zusammengassung-Die direkte numerische Simulation einer vollstandig ausgebildeten turbulenten Kanal- 
striimung wird angewandt, urn den vollstandig ausgebildeten passiven Warmeiibergang zwischen den 
Kanalwanden zu untersuchen. Die instationare dreidimensionale Navier -Stokes-Gleichung und die Advek- 
tions-Diffusions-Gleichung wird numerisch geliist-mit I 064 960 Gitterpunkten. Es wird keine Model- 
lierung in Untergittern vorgenommen, da alle wichtigen TurbulenzmaBstlbe aufgelijst werden. Die 
Reynolds-Zahl, die auf der halben Kanalbreite und der Kerngeschwindigkeit basiert. betragt 2262. die 

Prandtl-Zahl ist gleich I. 

IlPllMOE YMCJIEHHOE MO~E_iWIPOBAHME I’IACCMBHOI-0 TEl-UIOlTEPEHOCA I-IPM 
TYPGYJIEHTHOM TEYEHMM B KAHAJIE 

AmmTaum+Ilpnhfoe YHcnetiHoe MonensipoBaHHe nonHocrbm pa3BnToro Typ6yneHTHoro TeqeHHn B 

KaHaJle HCllOJlb3yeTCn JUtSi HCCJleAOBaHHII lTO,IHOCTblO pa36HTOrO ItaCCHBHOrO TeMOO6MeHa MeXCny 

CTeHKaMH KaHa."a. ~HCneHHO ,k$maIOTC~ HWauHOHapHOe Tpe.XMepHOe ypaBHeHHe HaBbe--&oKca H 

ypaBHeH&ie WlBeKUHH H&l@y3HH IlpH 1064960 TO'IKaX CCTKH. MOneAHpOBaHHe ItOLICeTOYHbIX TO'ieK He 

l,pOBOAHTCK,TaK KaK BE. BaXCHbIe MacwTa6bl Typ6yJleHTHOCTH pa3peUIeHbI. qHCJl0 kikHOJlbllCa, OCHO- 

BaHHOeHaIlOJlyUJllpHHe KaH~aHO6~MHOiiCKOpOCTN,COCTaBnlIeT2262,aqHCnO~paHMnnpaBHO 1. 


